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Conditional Probability and Nicod's Conditional

David Lewis argued in 1976 that "there is no way to interpret
a conditional connective so that, with sufficient generality, the
probabilities of conditionals will equal the appropriate condi-
tional probabilities.”1l His argument assumes that any good logic
of conditionals must include certain theorems which, when
conjoined with the Kolmogorov axioms of probability, lead to
absurdities,

In this paper I present and defend a type of conditional
which does not have those theorems and is assigned measures of
probability equal to those of conditional probabilities. I have
previously been interested in the kind of conditional involved,
which I call 'C-conditionals' (as opposed to truth-functional or
'TF-conditionals'); but its relation to conditional probability
first came to mind in reading Hempel remarks on Jean Nicod's
treatment of conditionals in confirmation theory2,

Hempel described Nicod's criterion as follows: According to
Nicod, a universalized conditional, '(x)(if P(xX) then Q(x)', is
confirmed by an object

.if and only if it satisfies both the antecedent
{here: 'P(x)') and the consequent (here 'Q(x)') of the
conditional; it disconfirms the hypothesis if and only if
the satisfies the antecedent, but not the consequent of
the conditional; and (we add this to Nicod's statement)
it is neutral or irrelevant, with respect to the hypothesis
if it does not satisfy the antecedent..." 3

Thus Nicod's conditional is true or false only in cases where the
antecedent is true, and treats the conditional as being neither
true nor false (neutral) in cases where the antecedent is not
satisfied. Hempel adds that Nicod "states explicitly what is
perhaps the most common tacit 1Q}e5pretizu2ndpf the concept of
confirmation." tQ&é% per Ifﬂﬁﬁﬁﬁge ke the notion of
such a condltlonaﬁ j%e show tha such a conditional ean
providesa solution to David Lewis's problem.

1. Introduction

We must first distinguish 1) the use of ratios from 0 to 1 to

leprobabilities of Conditionals and Conditional Probabilities”,
The Philosophical Review, LXXXV, 3 (July 1976).

2see Carl G. Hempel, Aspects of Scientific Explanation, Free
Press, 19656, "Studies in the Logic of Confirmation" pp 3-53,
and Jean Nicod, The Logical Problem of Induction, 1923, English
translations in Jean Nicod, Foundations of Geometry and Induction
{translated by P.P.Wiener) London, 1930; (cf. p.219) and also in
Jean Nicod, Geometry and Induction, (translator, Michael Woods)
University of Califaornia Press, 1970, (Cf. p. 189)

3Hempel, Opus Cit., p.11.
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represent relative statistical distributions of sub-classes in a
reference class of evidential data from 2) projections of these
ratios upon other events, or classes of events beyond the
evidential data. Most philosophical discussions of probability
are concerned with how to justify projections of ratios to events
or classes of events not included in the given evidence.

This paper does not address issues about projectibility. It
treats Kolmogorov's axioms solely as rules for assigning ratios
from 0 to 1 to statements in canonical logical language on the
basis of statistical distributions among subclasses of a finite
reference class of data. It does not matter whether the initial
assignments are based on empirically established frequencies, or
on a priori numerical assignments. Thus the a prioril vs frequency
theory debate is also not at issue.

Thus occurrences below of the expression, 'Pr(A)', for 'the
probability of A', should be interpreted merely as denoting
the frequency of true instances of an expression with respect to
a class of initial evidentiary data, without implying project-
ibility or addressing issues about initial assignments.

The objective is to retain the numerical consequences of the
Kolmogorov axioms, while altering the presupposed logic from one
which uses a truth-functional conditional only to a logic which
includes C-conditionals whose probability ratios are those of
standard conditional probability.

Kolmogorov's axioms for probabilitity theory may be stated as
follows:

PR1 If '(A iff B)' is logically true, then Pr(A)=Pr(B).
PR2 0 < Pr(A) < 1
PR3 If |-A, then Pr(A)=1
PR4 Pr(AvB) = (Pr(A) + Pr(B) - Pr(A&B)
PR5 If P(A)>0 then Pr(B/A) = Pr(A&B)
Pr(A)

The changes I propose are that 1) the occurrence of ‘'iff' in
the object-language in PR1 should be changed from a TF-bicondit-
ional to a C-biconditional, and that 2) conditional probability,
as expressed by 'Pr(A/B)' in PR5, be changed to 'Pr(If A then B)'
with a C-conditional. My claim is that these changes are intuit-
ively and semantically justifiable, and that the numerical
results will be the same as in standard Kolmogorov theory.

2. The truth-functional conditional in probability theorvy.

. Let ug first review what the problem is.

| All probability assignments greater than 0 presuppose the
inclusion of one sub-set of the Reference Class within another
sub~-set of that class. The probability ratio is gotten by
dividing the number of members in the included sub-set by the
number of members in the sub-set which includes it. The included
sub-get is always the intersection of some sub-set with the
including sub-set. In some cases the divisor is the number of
members in the improper sub-set (the Reference Class itself),



Such is the case when the Probability operator is applied to a
purely truth-functional expression. When the divisor is gotten
from some proper sub-set of the Reference class, the probability
ratio is established by the formula for conditional probability.
The assignment of 0 signifies that the two sub-sets are disjoint.

The function called conditional probability, expressed by the
symbol, 'Pr(B/A)', 1is usually read "the probability of B, given
A". Intuitively it seems reasonable to expect that conditional
probability is simply the probability of a conditional, i.e.,
that 'Pr(B/A)' means 'Pr(if A then B)'. But if the 'if...then' in
'Pr(If A then B)' is a truth-functional conditional the results
are very different from what is wanted. Thus a separate concept
of "conditional probability" has been introduced, and the
probability of the truth-functional conditional has been rejected
for that purpose.

Why is the truth-functional conditional unsatisfactory?

Suppose we have a bowl of 10 pieces of fruit (= the reference
class, R) of which 6 are apples and 4 are pears; and suppose
there is just one brown apple (a russet apple), though there are
2 brown pears. Let 'A' stand for 'x is an apple' and 'B' stand
for 'x is brown' etc. We may represent the contents of the bowl
as follows, with sub-sets R={1,2,3,4,5,6,7,8,9,10}, B={5,6,7} and
A={1,2,3,4,6,9}:

Figure 1
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By standard rules for establishing probability ratios, we get

Pr(A)=.6; Pr(-A)=(1-Pr(A))=.4; Pr(B)=.3; Pr(A&B)=.1; Pr(-A&B)=.2;
and, by PR4, the probability of the TF-conditional '(A->B)' is:

Pr(A~>B) =Pr(-AvB)=(Pr(-A) + Pr(B) - Pr(-A&B)) =(.4 +.3 -.2) = .5

All of these represent the probability of a truth-functional
expression with reference to the improper sub-set, R, the
Reference class.

Thus the probability of 'if x is an apple, then x is brown'
with a truth-functional conditional, in this case, is 3/6, or .5.
But, the probability that if x is an apple, then x is brown,
should be one out of six, i.e., 1/6 or .167. Using the rule, PRS,
for conditional probability, i.e.,

If Pr(A)>0, then Pr(B/A) = Pr(A&B)
Pr(A)

we get Pr(B/A) = Pr(A&B) = .1 = .167
Pr(A) .6

which is Just what we want.
If we let A be "X is an apricot', the probability ratio for
'If X is an apricot, then x is brown' interpreted as a truth-




functional conditional is, paradoxically, 1.0, or certainty, due
to the falsity of the antecedent. For there are no apricots in
the bowl, so that Pr(A)=0, Pr(A&B)=0 and Pr(-A&B) = Pr{(B) =.33,
so that by PR4,
Pr(A->B) = Pr(-AvB) Pr(-A) + Pr(B) - Pr(-A&B) =
1.0 + .33 - .33 = 1.0

In contrast, conditional probability, gives no probability at all
for apricots in the barrel being brown; this case is ruled out by
the "If Pr(A)>0,..." proviso. Like Nicod's conditional, if the
antecedent has no true cases, the conditional has no probability
ratio, not even 0.

The discrepancies between Pr(B/A) and Pr(-AvB) (i.e., between
conditional probability and the probability of the truth~funct-
ional conditional) are illustrated in Tables I and II below. The
upper figures in each row are Pr(-AvB), the lower figures in bold
type in each row, are the correct probability, Pr(B/A):

TABLE I TABLE II
Pr(B) Discrepancies
Pr(B,if A)| .0 .2 .5 .8 1.0 Pr(B)
.0 1.0 .8 .5 . 2 0 1l .0 .,2 .5 .8 1.
|Undef.Undef .Undef.Undef.Undef .0|1.00 .80 .50 .20
.2 .8 .84 .9 .96 1.0 2] .80 .64 .40 .16

SCO0DO00|0

] .0 .2 .5 .8 1.0 .5| .50 .40 .25 .10
Pr(A) .5| .5 .6 .75 .9 1.0 .8| .20 .16 .10 .04
1 .0 .2 .5 .8 1.0 1.0f .0 .0 .0 .0
.8] .2 .36 .6 .84 1.0 \
L .0 .2 .5 .6 1.0 \
1.0] .0 .2 .5 .8 1.0 Pr(A)
1 .0 .2 .5 .8 1.0

In summary, 1) Only when either antecedent or consequent has
a probability of 1, do Pr(B/A) and Pr(-AvB) coincide. 2) As the
probability of the antecedent approaches 0 (provided that the
probability of the consequent is less than 1), discrepancies
between the probability of the truth-functional conditional and
conditional probability increase. 3) As the probabilities of both
antecedent and consequent approach 0, the discrepancy approaches
1, i.e., an outright contradiction between the two results. 4) If
the antecedent has no probability, or 0, then the probability of
the TF-conditional is 1.0, but there is no probability ratio at
all for the conditional probability.

These discrepancies are consequences of the facts that a) each
instantiation of the TF-conditional of standard logic, (Px ->YXx),
must be assignhed either T or F, and b) the TF-conditional is true
whenever its antecedent is not true, or its conseqguent is true.

3. Constraints on the logic of conditionals, based on require-
ments of the logic of probabilities.

Assume we want the C-conditional (i.e., Nicod's conditional)
to have probability assignments that coincide with those of
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the standard conditional probability. Let the symbol, '(A=>B)',
represent such a conditional (as distinct from '(A->B)' for the
truth-functional conditional). What constraints must be placed
on such a conditional?

If Pr(A=>B) is to capture conditional probability, the
following, among others, can not be theorems of logic 4, and
hence interchangable in probability expressions, under PR1:

I. ((A=>B) <=> (-B=>-A)) \
IT. ((A=>-B) <=> (B=>-A)) | "Transposition”
III. ((-A=>B) <=> (-B=>A)) /

IV. ({(A=>(B=>C)) <=> ((A&B)=>C)) "Exportation”

Also the Law of Bivalence (that no statement can be neither True
nor False) must be given up and constraints must be laid on the
rules permitting nested conditionals.

Consider what would happen if these constraints are wviolated.

3.1 Failure of Transposition

Returning to Figure I, PR1 would be falsified in this model
if conditional probability were to be the probability of sonme
conditional (A=>B) for which logical equivalence yielded Trans-
position Principles:

Pr(A)=.6, Pr(B)=.3, Pr(-A)=(1-Pr(A))=.4 Pr(-B)=(1-Pr(B))=.7
Pr(A&B)=.1, and Pr(-A.-B)=.2, Hence, by PR5, with 'Pr(A=>B)'
replacing 'Pr(B/A)', we get,

Pr(A=>B) = Pr(A&B)= .1 =.167, Pr(-B=>-A)=Pr(-B&-A)= .2=.286

Pr(A) .6 Pr(-B) .7
But, if '((A=>B) <=> (-B=>-A)' is logically true, then, by PR1,
Pr(A=>B)=Pr(-B=>-A), i.e., .167=.286, which is absurd.

2.2 Failure of Exportation

We again get inequalities asserted as equalities, by PR1, if
Exportation is a theorem of Logic:

(1) " ((A=>(B=>C)) <=> ((A&B)=>C))' is logically true. [Export]
{2) If 1>Pr(A)>0,

then Pr(A) = Pr(B=>A)xPrB + Pr(-B=>A)xPr(-B) [by LCP]
{By replacing 'Pr(B/A)' by 'Pr(A=>B)' in the standard

4These are theorems David Lewis presupposes must belong to any
decent logic of conditionals, Opus cit.




probability theorem "The Law of Compound Probabilities”5]

(3) If 0< Pr(A=>B) < 1,
then Pr(A=>B)= Pr(B=>(A=>B))xXPr(B) + Pr{-B=>(A=>B))xPr(-B)
[By (2), substituting 'A=>B' for 'A']
(4) If 0< Pr(A=>B) < 1,
then Pr(A=>B)= Pr((B&A)=>B))XPr(B) + Pr((-B&A)=>B))xPr(-B)
[By (3), and PR1]

(6) Pr((B&A)=>B) = Pr(B&A&B) = Pr(A&B) = .1 = 1.0
Pr(B&A) Pr (A&B) 1
(6) Pr((-B&A)=B) = Pr(-B&A&B) = .0 = 0
Pr(B&A) .1
(7) Pr(A=>B) = 1xPr(B) + OxPr(-B) = Pr(B) [By 4),5),6),=s]
(8) Pr(A=>B) = Pr(B) [7),Arith]

Substituting in (8) the wvalues assigned to Pr(A=>B) and Pr(B) in
the model from Figure 1 we get:

(9) .167 = .333
Thus, assuming that the other steps (especially (3)) are in
order, Exportation would lead to absurd results in the Kolmogorov

system.

3.3 The Failure of Bivalence

The proviso in PR5 that the probability of the condition must
be greater than 0, is required by the arithmetical principle that
nothing is divisible by 0, as would be the case if Pr(A)=0 and
Pr(A=>B) = (Pr(A&B)+Pr(A)) as in PRS5.

The imposition of this proviso suggests that a conditional,
'If A then B', could have no probability - neither 1.0 nor
something less than 1.0 - and that a probability assignment to it
would be neither true nor false, if its antecedent had no
probability at all. This proviso avoids the "paradox" of the
TF~-conditional, that every conditional is made true (has Prob-
ability 1.0) if the antecedent is never true. It also coincides
with a semantic feature of C-conditionals, namely that a C-cond-
itional is neither true nor false when its antecedent is not
true, i.e., the rejection of the Law of Bivalence.

Let us return to our original example with Figure 1, in which
the conditional probability of 'x is brown, given that x is an
apple' differed from 'Pr(x)(xeA -> xeB) with a truth-functional
conditional.

First consider the cases in which conditional probability is
not involved. We have a reference class R, and sub-classes A and

5T.e., If 0< Pr(a) < 1,
then Pr(A) = Pr(A/B)XPr(B) + Pr(A/-B)xPr(-B)]




B distributed in various ways in the reference class.
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We are now construing the assignment of probability ratios as
based on the number of members in a sub-class of the reference
class, to the reference class itself.

Pr(A)= Pr(xeA) = .6; Pr(-A)= Pr(-xeA) = (1-Pr(xeA)=.4;
Pr(B)= Pr(xeB) = .3; Pr(A&B)= Pr(xeA&xeB)= .1;

Pr{-A&B)= Pr(-xeA&xeB)
Pr(A->B)= Pr(xeA->xeB)

.2
Pr(-AvB) = Pr(-xeA v xeB) =.5

On this construal, the variable X ranges over the set of all
members of the Reference class, and the probability ratio, Pr(ox)
is the number of members of #@Px divided by the number of members
in the reference class, R.

To determine Pr(A), we instantiate the sentential function,
'XeA', for all members of R, count up the total instantiations
which are true and divide by the number of cases in which 'XeR'
is true., Since there are six instantiations which are true,

namely 'leA','2eA', '3eA', '4eA', '6eA' and '9eA' and four which
are false, we get the ratio 6/10, or .6 as the probability ratio
for (A). This gives us the number of instances of 'xeA' which

come out true relative to all instances true and false; this is
what "the probability of A (relative to reference class R)"
means,

The atomic sentential functions, 'xeR', 'xeA', 'xeB', and
quantifier-free truth-functional molecular propositions formed
from them are in effect class predicates which define sub-classes
(proper or improper) of the set R. In the calculus of probabil-
ities, the negation sign defines class complements relative to R,
the ampersand defines class intersections and the velle defines
unions of classes.

The molecular sentential function 'xeA -> xeB', with the
truth-functional conditional, also vields a sub-class predicate,
one equivalent to '(-xeA v xXeB)' or '—-(xeA.-XeB)'. As in the
other cases, to determine the number of members in its sub-class,
one instantiates 'x' for each member of the reference class R,
and counts up the number of instantiations which come out
true. That number over the number of members in the class R gives
the probability ratio, Pr(-AvB). This calculation is shown in
the left-hand part of TABLE III.

TABLE III
TF-Conditional C-Conditional
xeA XeB (xeA -> xeB) | (xeA => xeB)
T F (leA -> 1eB) = F | (leA => l1leB) = F
T F (2eA -> 2eB) = F | (2eA => 2eB) = F
T F {3eA -> 3eB) = F | (3eA => 3eB) = F
T F (4eA -> 4eB) = F | (4eA => 4eB) = F



F T (5eA -> 5eB) =T | (5eA => 5eB) = -T&-F
T T (6eA -> 6eB) =T | (6eA => 6eB) = T
F T (7eA -> 7eB) =T | (7eA => 7eB) = -T&-F
F F (8eA -> 8eB) =T | ({8eA => 8eB) = -T&-F
T F (9¢A -> 9eB) = F | (9eA => 9eB) = F
F F (10eA ~-> 10eB) = T | (10eA => 10eB)= -T&-F
Pr(x)(xeA -> xeR) = .8 | Pr(x)(xeA => xeB) = .167

Secondly, consider the standard treatment of conditional
probability. And suppose that (A=>B) is some conditional such
that Pr(B/A) = Pr(A=>B) always holds. In this case we assunmne
again that Pr(A=>B) is short for Pr(xeA=>xeB). The probability
ratio, as before is:

Pr(B/A) = Pr(xeA=>xeB) = Pr(xeA&xeB) = .1 = ,167
Pr(xel) .6

An ordinary (non-truth-functional) reading of 'if...then',
"What is the probability ratio for B's being present, if A is
present?", asks what proportion of the members of A are B. To
answer this we look at the c¢lass A alone, and determine what
proportion of its members are members of the intersection of A
and B. The answer is the probability ratio, given by its condi-
tional probability. The C-conditional satisfies this jintuition.
It differs from the truth-functional conditional in that its
antecedent, 'xeA' in '(xeA=>xeB)' fixes the effective range of
the variable. When the antecedent of a C-conditional has free ¥,
the range of the variable x is, in effect limited to members of R
which belong to the sub-class A, The number of members in A
is the denominator of the probability ratio, and the number of
members in A which are also B, is the numerator. The right-hand
side of TABLE III illustrates how this works.

But how could a conditional in the matrix change the range of
the variable in the universal quantifier? Presumably it can not.
But if a) the Probability Ratio is defined as the number of cases
in which the instances of the universal quantification are True,
over the total number of instances which are either True or are
false and b) the conditional in the matrix is neither True nor
False if the antecedent is not true (not satisfied), then with
this type of conditional the range of the variable appears to be
restricted to the members of class denoted in the antecedent.
Only in this way will the probability of the conditional,
Pr(A=>B), equal the standard conditional probability, Pr(B/A).

Restating this explanation somewhat differently:

1) With all purely truth-functional wffs, ©x, including those
with truth-functional conditionals, the probability of '(x)(@Qx)'
is determined by instantiating 'x' for each member of the
reference class R, and counting up the number of instantiations
which come out true, Since the reference class, by hypothesis
here, is a c¢lass of actual existing entities collected in the
sample, every truth-functional statement about a member of that
class will be true, or else false of them. Thus the number of
true cases, over the number of true or false cases, is simply the
number of true cases over the number of members of R; this gives



the probability ratio, Pr(x)ox, in all cases, including the cases
where Px is '(-xeA v XeB)' i.e., '(xeA -> xeB)'.

2) In the ordinary (non-truth-functional) sense of 'if...then’
one proceeds quite differently. To determine the probability of
"{X)(xeA=>xeB)' we instantiate the 'x' with each member of R, but
we do not count 'aeA => aeB' true in cases where 'aeA' is false,
hor in all cases where ‘aeB' is true, as the truth-functional
conditional does. Rather we 1look only at members of R of which
' eA' is true, and having counted those for the denominator of
the probability measure, we see how many of that same group are
also members for which '_eB' is true, to get the numerator for
the ratio. For instantiations in which 'xeA' is false, the
conditional 'xeA=>xeB' as a whole is treated as neither true nor
false. Thus the right-hand portion of TABLE III shows how this
procedure gives us the same probability ratio as demanded by the
formula for conditional probability, Pr(B/A).

Thus the semantics of any conditional which can be used to
express conditional probability, can not be a semantics which is
restricted by Bivalence, i.e., that no statement can be neither
True nor False. This conclusion is needed to account for the
apparent restrictions on the ranges of variables in conditional
probabilities. It also explains the proviso, 'If Pr(A)>0,'in the
rule, for conditional probability, PR5. For 'Pr(A)=0'is equi-
valent on our account to 'Pr(x)xeA =0', and this is the case if
and only if no member of the reference class is a member of A,

i.e., 'xeA' 1is not true for any instance at all. Thus there can
be no ratio of the number of true instances of '(xeA & 0x)' over
true instances of 'xeA' (since 0 is never a denominator), and

thus no ratio at all. Thus in cases where Pr(A)=0, Pr(A=>B) is
not true in some proportion of its instances, and is not false in
some proportion of its instances, it is neither true nor false;
i.e., it is both not true and not false, contrary to Bivalence.

All probability ratios are conditional probability ratios.

According to the account we are giving, all probabilities
ratios are implicitly conditional probabilities. Where A is a
schema of s;ggggg%rlqgic, the ratio Pr(A) is the ratio of true
instances of 'xeASXdver the number of true instances of 'xeR',
i.e., the number of members in the reference class. In other
words, the probability ratio for a truth-functionally defined
sub-class k@x is determined by the number of members of the
intersection of f0x with %Rx over the number of members of %Rx.

In the model of Figure 1, the probabilities of A, B, -B,
(A&B), (A&-B), -(AvB), (-Bv(-A&B)), etc. are defined as their
probability, given the reference class, R. To find the prob-
abllity ratio of each, we count the number of members in the
intersection of that class with the reference class, and take the
ratio of that number over the number of members of R, e.g.,

Pr(A) Pr(R=>A) =Pr(R&A) = 6 =.6

Pr(R) 10
and of course the probability of R itself is P(R/R) = Pr(R=>R) =
Pr(x) (xeR=>xeR) = Pr(xeR&xeR) = Pr(R&R) = 10 = 1.0.

Pr(xeR) Pr(R) 10



In cases of conditional probability, e.g.,the probability of
'{x) (xeA=>xeB)', it is the ratio of the number of members in the
intersection of two sub-classes A and B of the reference class R,
to the number of R that are members in A. I.e., for every 'Pr(A)'
there is some B such that, 'PrA' abbreviates 'Pr(x)(xeB=>xeA)’',
where 'B' may be 'R',

IT.e., Pr(x)(xeB&xeld) N(2(xeB/\xed)
Pr(x)xeB NR® xeB
Always, then, 'Pr(A)' abbreviates, for some B (possibly R),

the number of members in the intersection of A and B
the number of members in B

I.e., Every ratio 'Pr(A)' is an abbreviation of 'Pr(A/B)', or
Pr(B=>A), for some B.

3.4 The Problem of Nested Conditionals

The problem of nested conditionals, i.e., the question, how
does one determine the probability ratio for nested conditionals
like '(A=>(B=>C))' or '((A=>B)=>C)'?, is often viewed as a

difficulty. But there is no problem here. The conditionals needed
and used in establishing probability ratios are always 1st-degree «
conditionals, 1i.e., conditionals with only the standard truth-
functional connectives in their antecedent and consequent.

This is shown by consideration of the methods outlined above
for establishing probability ratios by inspecting distributions
among sub-classes of a Reference class or Sample Population.

In the cases where A has only truth-functional connectives,
'Pr(A)' abbreviates 'Pr(A/R)' as mentioned above. With the new

(-conditional, Pr(A&B) = Pr(R=>(A&B) and Pr(A)=Pr(R=>A). But the
denominator for these initial probability ratios (for A, (A&B),
(AvB), etc.) is always Pr(R), and Pr(R) always cancels out. Thus,
since Pr(A&B)= Pr(R=>(A&B)), and Pr(R)=1.0,

O (Pei=x s@y)(yer, PrES=MRe50) G P xed) =y 5 @wllveR. Pr (e d) = Prlxewoxei])

Pr(R&A&B) N (xeR&xeA&xeB)
Pr(R=>(A&B)) = Pr(R) = N&(xeR) = N (xeR&xeA&xeB)
Pr(R) Pr(R) N&(xeR) N=X (xeR)
Pr(R) N&(xeR '

In cases of conditional probability, Pr(A=>B) is the ratio of
of the number of members of the intersection of A and B to the
number things that are A, not R. Given that Pr(A) = Pr(R=>A),

Pr(A=>B) =Pr(A&B), =Pr(R=>(A&B)) M (RoA = 8)
Pr(A) Pr(R=>A); S Py RaA)
but,
Pr (R&A&B)
Pr(R=>(A&B)) = Pr(R) = Pr(R&A&B) = Pr(A&B) = N&(xeA&xeB)
Pr(R=>A) Pr(R&A) Pr(R&A) Pr(A) N%(xeA)
Pr(R)

There is a category mistake in supposing that there would be




any probability ratio for a nested conditional of the sort used
to express conditional probability. For while nested truth-
functional conditionals - exXpressions like '(xeA->(xeB->xeC))’
(or equivalently, '(-xeAv(-xeBvxeC))') - define sub-classes which .b//’
have a definite number of the individual members of the Reference
class as their members, expressions like ' (xeA=>xeB)' do not
define sub-~classes of R whose members are members of R. They
represent a ratio of the two ratios that two sub-classes of the
reference class separately bear to the reference class. The
number which expresses this ratio does not represent the number
of members in any sub-class of R.

In the mod;l (o} Flgure 1, or example, it makes no sense to
speak of a sub-c 80 ‘ﬁgho ed by {X:(xeA=>xeRB)}.
Since all probability ratios represent conditional probabil-
ity ratios, all represent in decimal form an ordered pair of two
numbers. When calculating the ratios for any finite model, each /
of the two numbers is the number of individuals in some sub-c¢lass JQ“A%/
of the reference class; a proper subclass to another proper W*dhn
sub~class in the case of conditional probabilities, of any
sub-class to the reference class in other cases. Probability
ratios are ratios between numbers of members of distinct sub--
classes (proper or improper) of the reference class. Initially,
working from the sample or data base, all such sub-classes
including the Reference class are finite, and the individual
members of the reference class are indivisible. If any expression
is to yield a probability ratio, its terms must be gotten by
counting the number of members in some sub-class of the reference
class. All truth-functional expressions are used to represent the
ratio between the number of members of some sub-class of R and
the number of members in R. In conditional probability, Pr(B/A,
or Pr(x)(xeA=>xeB), the terms xeA and xeB must determine a
subclass of R, but the conditional itself can not do so. Only if
the antecedent, A, is such that Pr(A)=1.0, will it cancel out so
as to leave the consequent,B, to determine a sub-class.
Pr(A=>B) in the model of Figure 1, does not represent some
sub-class of R which has one sixth of the members that R has.
There is no such sub-class. In that model the number of its
members would have to be 1.67 of the 10 members of R. Multiplying
by R, i.e., 10, the numbers of members which would be determined
by other condltionals are likewise ridiculous:
since Pr(-B=>-A)=,286, the members of ({X:(-XeB=>-xelA)} 2.86;
since Pr(A=>-B)=.833, the members of {x: (xXeA=>~-%eB)} 8.33;
since Pr(B=>-A) =.67, the members of {X:(xeB=>-xeA)} = ,6.7; and
since Pr(-B=>A)=.71, the members of (X:(-xeB=>xXeA)=7.1.

Thus the expressions

[

'Pr(A=>(B=>C))' which supposedly = a ratio, 'Pr(A&(B=>C))’',

Pr(A . v
Pr(B=2e) i w2 Pala o wos, coch of winiv & W(MME W“"M,

make no sense. For '(B=>C)' does not denote a subclass of R; t
is used only to establish a ratio of two numbers, namely the
number of members of the sub-class of R which is the intersection
of (B and C) over the number of members in the sub-class B. In
contrast, non-nested Pr(A=>B) will make sense, provided it is a
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lst-degree conditional with truth-functional propositional
functions for B and C. For then it is defined as the ratio of
number of members in the sub-class denoted by the numerator over
the number of members in the sub-class denoted by the denominato-
r.

It not only makes no sense to speak of nested conditionals,
it makes no sense to assign probabilities to conjunctions or
disjunctions of whatever conditionals are implicitIy used in
conditionmal probability (unless the same sub-class is denoted in
all antecedents). For if probability ratios were determinable in
that way, the result should represent the frequency of a sub-
class relative to the Reference class; but that, we have just
seen, will not do. Correlatively, adding or subtracting condi-
tional probabilities will not, in general, vield ratios of the(
number of members in any sub-class to the number of members in
any other sub-class.

On the other hand, there 1is no problem in multiplying
conditional probabilities or in finding the probability of the
negated conditionals. The ratio for Pr-(A=>B) is determined by
the axiom that Pr-(A) = Pr(1-Pr(A)). There is no difficulty in
subtracting the Pr(B/A) from 1.0, to get Pr-(B/A). What is
interesting., however, is that Pr-(B/A) or Pr-(A=>B) is equal to
the Pr(A=>-B). This is shown intuitively as follows. Pr(A=>B) is
a ratio of the number of members in the intersection of A and B
over the number of members in B. In the model above, Pr(A=>B) =_
1/6. Obviously, the number of members of A that are not in B,
j.e., the intersection of A and -B = 1-(1/6) or 5/6. Thus in our
model from Figure 1,

1) (1-Pr(A=>B)) = Pr-(A=>B) = Pr(A&-B) = Pr(A=>-B).6

2) Pr(A=>B) = 1/6 =.167, and ,\/’
and 3) Pr(A=>-B) =Pr(A&-B)=.5 =.833,
Pr(A) .6
Hence, 4) Pr(1-Pr(A=>B)) = (1 -.167) = .B833 = Pr-(A=>B).

Thus making all probabilities into conditional probabilities/
causes no problems of nested conditionals.

Nicod's Conditional

6A more formal proof from Kolmogorov axioms, is:
1) If Pr(A)>0, Pr(A=>-B) = Pr(A&-B)

Pr(A) (Df, Pr(B/A)]
2) Pr(A&-B) = (Pr(A) - Pr(A&R)) [Standard Theorem]
3) If Pr(A)>0, Pr(A=>-B) = (Pr(A) ~ Pr(A&B))
Pr(A) [2),1), Sub of =s]
4) If Pr(A)>0, Pr(A=>-B) = 1 - Pr(A&B) [3), Arithmetic]
Pr(A)
5) If Pr(A)>0, Pr(A=>-B) 1 - Pr(A=>B) [4).,Df, Pr(B/A)]

6) If Pr(A)>0, Pr(A=>-B) Pr-(A=>B) {6), Axiom,Pr(-A)]



In his "Studies in the Logic of Confirmation"7, Hempel is
confronted with the "paradox of confirmation". Hempel's question
is this: given a universal conditional sentence of the form,
'"(X)(1f P(x) then Q(x))', what would constitute confirmatory

evidence? Hempel interprets the 'if...then' in the universal
conditional as a truth-functional conditional, symbolized as
'(x)(Px ->Qx)'. But this gets him into the "paradox of confirm-

ation", that every observation that some particular object is not
a Raven constitutes confirmatory evidence for the generalization,
"All ravens are black".

This "paradox" has the same source as the divergence of the
probability of truth-functional conditionals from conditional
probability, namely, that in standard logic, the falsity of an
antecedent, '(a is a Raven)', logically implies '(a is a Raven ->
a is black)', which is an instance of "All ravens are black".

Nicod had proposed a criterion of confirmation which would
avoid these paradoxes8, His criterion suggests a conditional
whose truth conditions satisfy the requirements for conditional
probability. But Hempel rejects such a conditional, in large part
because it conflicts with the principle of Transposition, and
defends the truth-functional conditional, claiming that the
“impression of a paradoxical situation...is a psychological
illusion"9.

We take our cue from Nicod's criterion of confirmation, as
not only a way out of the "paradoxes of confirmation", but as
suggesting a conditional whose probability coincides with
conditional probability. I will show how and why, for such a
conditional Transposition, Exportation and Bivalence, must fail
to be theorems of logic. Then T will explain why Transposition is
s0o commonly thought to express a logical truth.

Hempel describes Nicod's criterion as follows: According to
Nicod, a universalized conditional, '(x)(if P(x) then Q(x)', is
confirmed by an object

"...if and only if it satisfies both the antecedent

(here: 'P(x)') and the consequent (here 'Q(x)') of the
conditional; it disconfirms the hypothesis if and only if

the satisfies the antecedent, but not the consequent of
the conditional; and (we add this to Nicod's statement)

it is neutral or irrelevant, with respect to the hypothesis
if it does not satisfy the antecedent..." 10

Thus, like the conditional implicit in conditional probability,

7

See Carl G. Hempel, Aspects of Scientific Explamation, Free
Press, 1965, pp 3-53

8Foundations of Geometry and Induction (translated by P.P.Wiener)
London, 1930; p.219; The Logical Problem of Induction is also
included in another translation: Jena Nicod, Geometry and
Induction, University of California Press, 1970, see p. 189.
9Hempel, opus cit., p. 18.

10Hempel, Opus Cit., p.11.
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Nicod's considers only cases in which the antecedent obtains,
treats the conditional as being neither true nor false (neutral)
in other cases where the antecedent is not satisfied. Hempel
adds that Nicod "states explicitly what is perhaps the most
common tacit interpretation of the concept of confirmation."

Hempel's main argument against Nicod's conditional is that it
requires abandoning the laws of Transposition:

"Consider the two sentences

81: '(x)[Raven(x) -> Black(x)]'

S2: '(x)[-Black(x) -> —-Raven(x)l]'
(i.e., 'All Ravens are black' and 'Whatever is not black is
not a raven'), and let a, b, ¢, 4 be four objects such that a

is a raven and black, b a raven but not black, € not a raven
but black, and 4 neither a raven nor black. Then according to
Nicod's criterion, a would confirm S1, but be neutral with
regpect to S2; b would disconfirm both S1 and S2; © would be
neutral with respect to both 81 and 82, and 4 would discon-
firm S2 but be neutral with respect to S1.

"But S1 and S2 are logically equivalent; they have the
same content, they are different formulations of the same
hypothesis, and yet, by Nicod's criterion, either of the
objects a and 4 would be confirming for one of the two
sentences, but neutral with respect to the other."11

But this argument has force only if one agrees that S1 and S2
are logically equivalent, i.e, that Transposition holds. It begs
the question if one accepts the conditional which Nicod's account
suggests, and which is necessary for the conditional implicit in
conditional probability. For then 'if x is a raven then x is
black' is not logically equivalent to 'if x is not black then x
is not a raven'. Among other things, substitution of contra-
positives does not preserve probability ratios, as we have seen.
It also does not lead to the implausible consequence that one way
to confirm the proposition that all ravens are black is to set
about examining all non-black objects.

Hempel's rejection of Nicod's conditional is presented as a
proof that that c¢onditonal would violate one of the basic
conditions of adequacy for any theory of confirmation, namely the
"Equivalence Condition". The Equivalence Condition is surely one
we must accept in some very sound, ordinary sense. It says that
if S3 confirms S1, and S1 is logically equivalent to S2, then S3
confirms S2. This seems but another version of PR1, the first of
axiom of probability. But also, we assume agreement that 'Sl is
logically equivalent to S2' entails that 'S1 if and only if S2°'
is a logical truth. But with the conditional Nicod suggests the
formula '(x)(xeA => xeB) if and only if (x)(-xeB => -xeA)' is not
a logical equivalence. For in giving a different meaning to
'if...then', we get a different meaning for 'if and only if', as
well as for "logically equivalent". Thus the rejection of
Transposition due to a different meaning for the conditional need

llHempel, Aspects of Scientific Explanation, p.12.



not entail the rejection of the Equivalence Condition for any
adequate theory of confirmation, though it may change the the
meaning of 'logically equivalent'. This is indeed what happens
with Nicod's conditional.

What is implicit in Nicod's conditional may be made more
explicit in the formal logic of these conditionals sketched below
and in and related semantic concepts of "analytic containment”
and "referential synonymity".

Let us use the same model we used for conditional

R:| 1 ] 2| 3| 4|5 )] 6| 7 ]) 81 9] 10 |

Azl + | + | + | + | + | + | I | | |

B:| | | | | | + | + | + | I ]
ITI

For purposes of this paper, I shall use (instead of 'All
ravens are black') a variety of universal conditionals about
what I shall call a 10L-Figures; these are figures like Figure 1
below which have 10 boxes or "locations", labeled 'L1l, L2,..etc,

(L1 | L2 | L3 | L4 | LH | L6 | L7 | L8 | L9 |L10O |

| | | | | a2 | a3 | | | a5 | a6 |

| | | b | | b2 | bd | | b6 | b3 | bl |

| | I | | | | | | | |

Figure 1
The 10L-Figures vary in having a's {al1,a2,a3,...}, and or b's
{b1,b2,b3,...}, or in one or more, or none, of the locations. The
first universal C-conditional to be considered is:
1) PFPor any location, L, in Figure 1,

if an 'a' occurs in location L,

then a 'b' occurs in location L. [Form='If A then B']
Here we treat 'if...then' as a Nicod~, or C-conditional, and
we intend that 'Figure 1' denotes the Figure 1 above, and that
'L1','L2', etc., are used to denote the rectangles in Figure 1

which contain tokens of those signs.

In this situation, though 1) clearly refers to Figure 1, what
it talks about in Figure 1 are only those states of affairs in
L5, L6, L9 and L10 in which there are a's; it says that in those
locations there are also b's. It does not talk about anything
present or absent in any other locations in Figure 1.

In contrast, consider the contrapositive of 1), the C-con-
ditional, of the form 'If -B then -A':

1') For any location, L, in Figure 1,
if it is not the case that a 'b' occurs in location L,
then it is not the case that an 'a' occurs in location L.



What 1') talks about is not what occurs in locations picked out
by the antecedent of 1) i.e., locations which have a's in
them. Nor does it talk about all locations which have b's in
them, It says that in locations which do _not have b's, namely,
L1, L2, L4, and L7, it is also the case that there are no a's.

Now it happens to be true of Figure 1 that both 1) and its
contrapositive 1') are true. In other words, in this case, 1) is
true of Figure 1, if and only if 1') is true of Figure 1, and
that seems to be an instance of a transposition principle.

But the question is, is '1) is true if and only if 1') is
true' a logical truth? They have the forms respectively, of 'If
A then B' and 'If -B then -A'; are all pairs of statements having
these forms logically equivalent?

Iv

The term 'logically eguivalent' in standard logic is equated
with 1) truth-functional equivalence - wherever the truth-table
for the truth-functional biconditional 'A=B' comes out all T's,
and with 2) quantificational equivalence, which is a bit more
complicated, but which holds only if truth~functional equi-
valences hold of all of a universal quantifier's instances.

In the semantic theory I wish to advance, in place of
standard truth-functional semantics, two expressions are logical-
ly equivalent if and only if they are referentially synonymous.
We need not go into "referentially synonymous" beyond saying that
if A is referentially synonymous to B, then 1) A talks about all
and only the same things that B talks about, and 2) A says all
and only the same things about whatever it talks about that B
says about those things and vice versa. Clearly, not all truth-
functionally equivalent statements are referentially synonymous;
notably the pairs {'(Fa.-Fa)', '(Gb.-Gb)'} and {'(A.-A.B)',
'(A.-A.-B)'}.

In the semantics of C-conditionals, truth-functional ecuival-
ents are not always "logically equivalent” in this sense. For
'A is logically equivalent to B' 1is true iff and only the
statement 'A if and only if B' is logically true; but when 'if
and only if' is taken as a C-biconditional rather than a truth-
functional biconditional, "logically equivalent" gets a different
meaningl12,

Thus for 1) and its contrapositive, 1'), to have the same
meaning, in the sense of being referentially synonymous, they
must talk about and refer to the same entities. This is what they
do not do. The statement 1) talks about only those states of
affairs in L5, L6, L9 and L10 which contains a's in Figure 1,
while the statement 1') talks about only the states of affairs in

12

On the other hand, all logically true truth-functional bicon-
ditionals remain logical truths since they are always negations
of inconsistent statements; this is not the same as to say the
two components are logically equivalent in our new sense.

/b



locations which do not have b's, namely, L1, L2, L4, and L7.
Hence 1) and 1') do not talk about the same things, hence do not
mean the same thing (in the sense of referentially synonymy), and
hence do not "have the same content" and are not "different
formulations of the same hypothesis" (to use Hempel's words).
Since they are not referentially synonymous, on this theory of
logic they are not logically equivalent.

A

The point can also be made syntactically in terms of the
calculus of analytic equivalence - i.e., in terms of its rules
for theoremhood. Within standard logic it is possible to distin-
guish syntactically a sub-class of truth-functionally equivalent
pairs, which I shall call the class of "analytically equivalent"”
pairs. Let the calculus AEQ, have '&' and '~' as primitive
sentence connectives, the usual definitions and rules of form-
ation, the axiom schemata,

AEQl1. A aeq (A&A) [&—-Idempotence]
AEQ2. (A&B) aeq (B&A) {&-Commutation]
AEQ3. (A&(B&C)) aeq ((A&B)&C) [&-Association]
AEQ4, (A&(BvC)) aeq ((A&B)vV(A&C)) [&v-Distribution]
AEQ5. --A aeq A [Double Negation]

and the rule of transformation,
R1. If A aeq B, then C aeq C(B//A)13

In this system, two expressions can not be analytically equi-
valent if either contains a variable the other does not, or
if there is an atomic sentence which occurs negatively, or
positively, in one but not in the otherl4d,

By this criterion of "analytic equivalence" 1) is not
analytically equivalent to 1'), because the atomic components of
1) and 1') occur positively in 1) but not in 1') and negatively

in 1') but not in 1).

All analytically equivalent pairs in standard logic are can be
proved to be referentially synonymous and thus logically equi-
valent in our sense. They are also all truth-functionally
equivalent; but, as mentioned, not all truth-functionally
equivalent pairs are analytically equivalent, and thus not all
such pairs are logically equivalent in our sense. Hence, there is
a formal proof that 1) and 1') are not logically equivalent in
the logic of C-conditionals.

13por 'A aeq B' read "statement of the form A is analytically

equivalent to statement of the form B"; for 'C(B//A)' read "a
statement like C except that one or more occurrences of B in C
are replaced by A".

14p component occurs negatively, if and eonly if, in primitive
notation it occurs within the scope of an odd number of negation
signs; otherwise it occurs positively. Due to Herbrand.




VI

It might thought be that although 1) and 1') are counter-

examples (using C-conditionals), for the statements,

'ITf A then B' is referentially synonvmous to 'If -B then -A'
'Tf A then B' is analytically equivalent to 'If -B then -A'

(thus the contrapositives are not always logically equivalent),
that perhaps we could never have 'If A then B' true and 'If -RB
then -A' not true in the same context. Let us express this
principle as

'If A then B' is true if and only if 'If -B then -A' is true.

In the case of Figure 1, we can see that though 1) and 1') are
not logically equivalent by the definitions involving referential
synonymy and analytic equivalence, nevertheless, they were both
true together; one was true if and only if the other was true
in the case of Figure 1. The question now is, could it ever be
the case that one was true and the other was not true? In other
words, may it not be that semantically at least, they are
truth-functionally equivalent?

'Figure 1', as used in this paper, is the name of an actual
state of affairs on a piece of paper in the actual world. Differ-
ent conditional statements can be made with reference to Figure
1, some of which would be true, and some of which would be
false. The meaning of a C-conditional does not depend on its
being true or false. The following is a false C-conditional:

2) For any location, L, in Figure 1,
if an 'b' occurs in location L,
then a 'a' occurs in location L.

for (following Nicod's Criterion), this picks out the locations
L3, L5, L6, L8, L9, and L10, which have b's in them, and says
that they all have a's in them, which is false. The meaning of
the statement 2) would have been the same, however, had Figure 1
been drawn differently so as to make 2) true. The fact that
Figure 1 is just what it is, is what makes 2) false,.

Figure 1
| L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 |L1O |
| | I | | a2 | a3 | | | a5 | a6 |
| | | b5 | [ b2 | b4 | | b6 | b3 | bl |

But it also seems clear with respect to Figure 1, that if 2) is
false, then its contrapositive,

2') For any location, L, in Figure 1,
if it is not the case that an 'a' occurs in location I,
then it is not the case that a 'b' occurs in location L.




must be false also. Thus in Figure 1 it seems that when a
statement is false, its contrapositive must be false also. In
other words,

'Tf A then B' is false if and only if 'If -B then -A' jis false.

apparently holds for Figure 1; and this also seems to reinforce
this new formulation of transposition.

If the conditional is true, then there exists, in some context
being referred to, a set of two or more locations, at least one
of which contains the antecedent, and all locations which contain
the antecedent contain the consequent. The guestion now is,
Whenever this is the case, must the contrapositive conditional
also be true?

But a problem arises. In the semantics of C-conditionals,if
no location in the context referred to contains the antecedent,
then the conditional can not be true, for then it is talking
about something that isn't there, in the field of referencelb,
Nor can it be false; for to be false in the semantics of the
C-conditional is to satisfy the antecedent, but not the conse-
quent. A C-conditional can be neither true nor false in some
cases.

Now consider Figures 2 and 3 and the statements 3) and 3')
below. The statement 3) has the form 'If A then B' and is true
of Figure 2 below but is not true of Figure 3; and the statement
3') has the form 'If -B then -A' and is true of Figure 3, but is
not true of Figure 2. This situation is due in each case to the
fact that the antecedent is not satisfied: what is being talked
about does not exist in the field of reference.

| L6 | L6 | L7 | L8 | L9 |L10 |
l | | | | a2 | a3 | | | as | a6

| b2 | b4 | b9 | b6 | b3 | bl |
Figure 2

3) For any location, L, in Figure 2,
if an 'a' occurs in location L,
then a 'b' occurs in location L. [Form:'If A then B']

| L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 |L10 |

157his principle, that a C-conditional is neither true nor false
when referred to contexts in which the antecedent is not satis-
fied, is an extension of the property it must have when serving
as the conditional of conditional probability; the probability of
B given A, is undefined when the probability of A is 0. This
semantic property also comes 1in handy, however, in dealing with
other problems 1like problems relating to non-referring terms, or
inconsistent predicates. It presupposes a semantics which
distinguish 'is false' from 'is not true' however; a plausible
semantics which is demanded by C-conditionals.



| I | | | | | ! | | |
I l | | | b2 | b4 | I [ b3 | bl |

Figure 3

3') For any location, L, in Figure 3,
if it is not the case that a 'b' occurs in location L,
then it is not the case that an "a' occurs in location L.
[Form:'If -B then -A']

The statement 3) has the same form and the same meaning as
1) (where meaning does not include contingent actual facts about
the contents of 'Figure 1' or 'Figure 2' or 'Figure 3'). But
3), and thus 1), can not be said by virtue of their meanings to
imply the truth or falsehood of 3') or of 1'), for though both
contrapositives are true of Figure 3, they are not true (or
false) of Figure 2, since the antecedent does not apply to
anything in the field of reference.

Again, consider the contrapositives, 4) and 4'); 4') is true
of Figure 3, but 4) is not true, since the antecedent is not
satisfied:

4) For any location, L, in Figure 4, [Form:'If A then -B']
if an 'a' occurs in location L,
then it is not the case that a 'b' occurs in location L.

4') For any location, L, in Figure 4, [Form:'If B then -A']
if a 'b' occurs in location L,
then it is not the case that an 'a' occurs in location L,

Or, consider the c¢ontrapositives, 5) and 6§'); 5) is true in
Figure 2, but 5') is not true of Figure 2 since its antecedent is
not satisfied:

5) For any location, L, in Figure 4,
if it is not the case that an 'a' occurs in location L,
then a 'b' occurs in location L.

§') For any location, L, in Figure 4,
if it is not the case that a 'b' occurs in location L,
then an 'a' occurs in location L.

Again, because their antecedents can not be satisfied,
neither one of 4) and 4') can be true in Figure 4, though they
are each contrapositives of the other, having the forms 'if A
then -B' and 'if B then -A' respectively:

Figure 4
j L1 | L2 | L3 | L4 | LB | L6 | L7 | L8 | L9 |L10O |
I l I | | I I | I | I
I 1 | | l | | | | 1 |
And likewise, neither one of 5) or 5'), which are contrapositives

of each other, with the forms, 'If -A then B' and 'If -B then A',
can be true of Figure 8§, since neither antecedent is satisfied,

RO



Figure 5
l] L1 | L2 | L3 | L4 | LS | L6 | L7 | LB | L9 |Li10O |
| al | a2 | a3 | a4 | a6 | a6 | a6 | a7 | a9 | al0|
| Pl | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 | bl0O]

From these considerations it is clear that even where 'If A
then B' is true, 'if -B then-A' may not be true, and thus that
transposition for C-conditionals fails even if only truth-funct-
ional equivalence is being claimed.

Thus we have shown that none of the following forms of trans-
position principles are laws in the logic of C-conditionals:

A) 'If A then B' is referentially synonymous with
'{if -B then -A)'
B) 'If A then B' is analytically equivalent to
'({if -B then -A)'3
C) 'If A then B' is true if and only if
'(if -B then -A)' is true.
D} 'If A then B' is truth-functionally equivalent to
'If -B then -A'

Of course if 'if...then' is interpreted throughout as the
truth-functional conditional, then all of A) through D) are
true. For, the conditionals in quotes are then taken in both
standard logic and analytic logic to mean '(-AvB)' and '(Av-B).
Thus A) and B), for example, become, analytically equivalent to

A') '(-A v B)!'! is referentially synonymous with
'(--B v -A)'

B') '"(-A v B)' is analvtically equivalent to
'"(-=-B v ~=A)'

and these are easily proven as theorems in analvtic logic, or in
the logic of referential synonymy. If the 'if and only if' in C)
is treated as a truth-functional biconditional as well as the
'if...then's in quotes in C), then C) would be derivable in the
truth-functional semantics of standard logic. Further, with
truth-functional interpretaions of the 'if...then's in D), D) is
a metatheorem of standard logic - it says the same thing as what
is meant by standard logicians when they say ''If A then B' is
logically equivalent to '(if -B then -A)'’.

Despite these results, it can be shown, that Modus Tollens is
is provable in a logic of C-conditionals with a truth-operator.
I.e., "If it is true that (If A then B) and it is true that -B,
then it is true that -A" can be sustained. Since the logic of
the C-conditional also avoids Exportation, the failure of
transposition principles will not lead to a rejection of Modus




Tollens16. The proofs of this point will be not be give here.
VIT

The principles of transposition have a very strong intuitive
appeal. Most people, I think, would say that if 'If A then B'
were true, then 'If -B then -A' would have to be true also. On
the other hand, the account of conditionals given above is also
very close to what people would say was meant by a conditional
statement - including the notion that a conditional is neither
true nor false where its antecedent does not apply to anything.
In my opinion, this conditional is c¢loser to a common sense
account of the conditionals than the truth-functional account
which makes every conditional true if its antecedent is false, or
if its consequent is true. How can these two incompatible
intuitions be explained?

We may begin by noting that in all possible Figures in which
the the set of locations includes hoth some locations in which
the antecedent is true and others in which it is not true, and
similarly for the consequent, both C) and D) will be true even if
the 'if and only if' in C) is taken as a C-biconditional. Among
the possible 10L-Type Figures with a's and b's distributed among
the locations, by far the greater number of possibilities will be
those in which some locations have a's and some don't and some
locations have b's and some don't17,

In general, when people assert universal conditionals both
the antecedent and the consequent, taken singly, describe states
of affairs which hold in some locations (at some times, in some
contexts) and do not hold in others. Even in standard quantified
logic, the range of the individual variables is generally taken
to refer to the set of all entities whatever, and it is often
asserted that no significant predicatesl8 (or, in any case,
extremely few) either apply, or fail to apply, to all entities.
Thus it may be suggested that the reason why the layman has
difficulty thinking of counter-examples to principles of trans-
position is because it would rarely be the case that he would
think of an example in which either the antecedent or the
consequent held, or failed to hold, universally in his field of
reference.

161.e.,'If (T(If A then B)) & T(-B)) then T-A)'
does not imply, in the logic of C-conditionals,
'(If T(If A then B) then (If T(-B) then T-A))'
The elimination of Exportation is also necessary to get a
ggnditional which expresses conditional probability.

Of the 1,048,576 possible 10L-Type Figures, 4092 would have all,
Oor no a,s or b's, making one or both of the contrapositives not
true, or not-false, or not~true when the other was true, or
not-false when the other was false. This is less than 4/10s of
1% of the total possibilities.

181 gignificant predicates' exclude tautologous or inconsistenct
predicates,.
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A second reason perhaps, is that many people in contemporary
semantics insist upon equating 'is false' with 'is not true', and
reject in the name of 'excluded middle' the possibility of
meaningful indicative sentences which are both not true and not
false. Movements like "Free logic", and others, are treated at
the present time as 'deviant', and have not yet gained universal
acceptance due to the immense power and effectiveness of standard
mathematical logic and its generally accepted semantic theories.

VIII

The problem which I would like to present to logicians is
whether they want 1) a logic of conditionals which entails a
variety of "paradoxes" (of which the "paradoxes of confirmation"
is but one sub-class) and preserves transposition as a law of
logic, or 2) a logic of conditionals which eliminates this and
many other "paradoxes, but does not include transposition and
exportation among its laws. Or, putting the question more gener-
ously: would it not be worthwhile to recognize, in addition to
the "truth-functional conditional" another kind of conditional,
the C-conditional, with its own logic and a different semantics
which allows us to avoid many, if not all, of the "paradoxes" of
the the truth-functional conditional, at the small price of
giving up some principles currently considered laws of logic?

Miscellaneous left-overs:

We will discuss this by investigating the truth or falsity of
the fellowing statements:

1) 'ITf A then B' truth-functionally equivalent to
'Tf -B then -A!

2) 'If A then B' is analvtically eguivalent to
"(if ~-B then -A)'

3) 'If A then B' is referentially synonymous with
'{if -B then -A)'

4) 'If A then B' is true if and only if
'"{if -B then -A)' is true.

5) ''"If A then B'is true' is analytically equivalent to
'"(if -B then -A)' is true'.
6) '"'If A then B'is true' is referentially synonymous with

'*{if -B then -A)' is true',.

5) and 6) have not been discussed: they depend on a semantics

of the truth-operator, and its relation to SYN and AEQ.

For, 'If A then B' is talking about A's and claiming a corre-
lation between As and Bs. But 'If -B then -A' is talking about
very different things non-Bs, and trying to correlate them with
non-As. This brings on the Raven Paradox.

To verify or confirm (x)(If x is R then x is B) we confine
our attention to Ravens; this is what the claim is about, what
the sentence as a whole refer to ~ ravens and their properties.

AN



To talk about non-black things is to not to talk about ravens.
[File:CONDPRB1 - Angell]

*Projection: If we choose one piece of fruit, x, from the barrel
what are the probabilities with respect to its being an apple or
being brown? Assuming any individual piece could equally possibly
be chosen, these four ratios are viewed as the 'probabilities' of
getting a brown apple on a given choice.

Pr(A&B)=.01 Pr(A&-B)=.09 Pr(-A&BR)=.,10 Pr(-A.-B)=.80.

There 1is a misleading tendency to identify 'Pr(A)=1.0' with
''"A'is True' and "Pr(A)=0.0' with ''A' is False', so that the
intervening values, O<Pr(A)<1, representing degrees of truth or
something. Rather, each probability ratio represents the ratio of
true instances to total instances of a universally quantified
propositional function.

To be sure, if any universally quantified proposition such as
(x) (Fx=>Gx) is true, then Pr(x)(Fx=>Gx) = 1.0, But if (x)(Fx=>Gx)
has any false instances at all, Pr(x)(Fx=>Gx)<1 and it is not
true. Existentially guantified statements are false if they have
a probability ratio of 0, but a probability ratio between 0 and 1
tells us nothing about whether they are true. No expression can
be both true and false; truth and falsehood are, at least, contr-
ariesl9, To allow that a quantified statement is false but yet
"true to a certain degree", and that its probability ratio
measures its degree of truth is prima facie incompatible with the
contrariety of truth and falsehood. To avoid inconsistency we
must either introduce two meanings of 'true' and/or 'false!', or
drop the principle that 'true' and 'false' are contraries, or
perhaps abandon 'truth' and 'falsehood' entirely in favor of
probability ratios. To retain both the univocality of 'true' and
‘false' and their contrariety, one must hold that universal
statements are either true or false (false if any instance is
false), and that the "probability ratios"” assigned to them
represent, not degrees of truth, but ratios (actual or expected)
of true instances to total instances,

The initial determination of a such ratios are based on
statistical distributions of members of some finite class among
its sub-classes, either within a sample, or by some a priori
assignment of initial ratios. Projections of such ratios onto
classes which extend beyond the initial data, or assignments of
such ratios to events nor included in the data as their 'chances'
or 'probabilities' of occurring are, do not change the initial
computations of ratios from the data base,

It can also work for all cases, including conditional probab-
ilities expressed as the probability of a conditional '(A=>B)"',
if the conditional involved is not subject to the Law of Bival-
ence, j.e., is allowed to be neither True nor False in instances

19This does not entail that they are sub-contraries; that no
expression can be both not true and not false. tre = (35Fy b Traan
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in which its antecedent is not satisfied.




